О книге
Приведены определения вероятности (классическое, статистическое, геометрическое и аксиоматическое), примеры вычисления вероятности, а также теоремы сложения и умножения, формула полной вероятности, формула Байеса. Рассмотрены основные распределения случайной величины и доказательства их свойств. Исследованы многомерные случайные величины, их характеристики, доказаны свойства функции распределения, плотности распределения, математического ожидания и ковариации. Приведены доказательства неравенств Чебышева и законов больших чисел. Представлена без доказательства предельная теорема в форме теоремы Ляпунова. Выведена интегральная теорема Муавра-Лапласа.
Для студентов, изучающих курс "Основы теории вероятностей и математической статистики".